Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials.
نویسندگان
چکیده
Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling.
منابع مشابه
Halogen Antimicrobials Oxidized Bacterial Signaling Molecules with Reaction of Acylated Homoserine Lactone
متن کامل
Quorum Sensing: It’s About Time
Quorum sensing is a form of cell-to-cell communication by which bacteria communicate by secreting signaling molecules called autoinducers that help regulate gene expression. Quorum sensing was first detected in Photobacterium fischeri [1]. A specific acylated homoserine lactone was found to regulate transcription of the luciferase operon resulting in light emission [2]. A related organism, Vibr...
متن کاملThe presence and role of bacterial quorum sensing in activated sludge
Activated sludge used for wastewater treatment globally is composed of a high-density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N-acylated-l-homoserine lactones (AHLs) in activated sludge was explored. The presence of N-heptanoyl-l-homoserine lactone in organic extracts of sludge was demonstrated along with activatio...
متن کاملStructural basis for antiactivation in bacterial quorum sensing.
Bacteria can communicate via diffusible signal molecules they generate and release to coordinate their behavior in response to the environment. Signal molecule concentration is often proportional to bacterial population density, and when this reaches a critical concentration, reflecting a bacterial quorum, specific behaviors including virulence, symbiosis, and horizontal gene transfer are activ...
متن کاملBacterial Quorum Sensing and Its Application in Biotechnology
Many bacteria use small diffusible signalling molecules called Autoinducers to communicate each other termed as Quorum Sensing. The signalling molecules in grampositive bacteria are oligopeptides, in gramnegative bacteria are Nacyl homoserine lactone and a family of auto inducers known as auto inducer2 in both grampositive and gramnegative bacteria. These molecules are internalized in the cell ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 67 7 شماره
صفحات -
تاریخ انتشار 2001